Math 8 Homework 3

1 Examples of Functions

(a) Each of the following is describing a function informally. Identify the domain and codomain of each function.
(i) For a natural number n, let $\sigma(n)$ be the sum of its positive divisors.
(ii) The $\operatorname{map} x \mapsto x^{2}$ is a useful example in calculus.
(iii) Any set $S \subseteq \mathbb{R}$ has an outer measure $m^{*}(S)$, which is either a nonnegative real number or ∞.
(iv) The 2×3 matrix A can multiply any vector in \mathbb{R}^{3}. The result is a vector in the plane.
(v) The cross product on \mathbb{R}^{3} gives a vector perpendicular to two given ones.
(vi) Given any continuous function $f \in C(\mathbb{R})$ we can compute its limit as $x \rightarrow 0$.
(vii) A sequence of real numbers $x_{1}, x_{2}, x_{3}, \ldots$
(b) Let S be a set. Suppose the function $\phi: \mathcal{P}(S) \rightarrow \mathbb{R}$ is additive; that is, for any $A, B \subseteq S$ that satisfy $A \cap B=\varnothing$, we have $\phi(A \cup B)=\phi(A)+\phi(B)$.
(i) Prove that $\phi(\varnothing)=0$.
(ii) Prove that for any sets $A, B \subseteq S$ we have $\phi(A \cup B)=\phi(A)+\phi(B)-\phi(A \cap B)$.

2 Injectivity and Surjectivity

(a) Give an example of functions and sets $f: A \rightarrow B$ and $g: B \rightarrow C$ so that
(i) f is surjective, but $g \circ f$ is not.
(ii) g is surjective, but $g \circ f$ is not.
(iii) $g \circ f$ is surjective, but f is not.
(iv) g is injective, but $g \circ f$ is not.
(v) f is injective, but $g \circ f$ is not.
(vi) $g \circ f$ is injective, but g is not.
(b) Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions such that $g \circ f$ is surjective. Prove that g is also.
(c) Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions such that $g \circ f$ is injective. Prove that f is also.

For the following problems, recall the mean-value theorem.
Theorem (Mean-Value). Let $f:(a, b) \rightarrow \mathbb{R}$ be differentiable. Given points $x>y$ within (a, b) there is a c between x and y so that

$$
f(x)-f(y)=f^{\prime}(c)(x-y)
$$

(d) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable everywhere. Prove that if f^{\prime} is never zero, then f is injective.
(e) A differentiable function $f:(0,1) \rightarrow \mathbb{R}$ satisfies $\left|f^{\prime}(x)\right| \leq 1$ for all x. Prove that f is not surjective.

3 Images of Sets

(a) Let $f: A \rightarrow B$ be an arbitrary function and $C, D \subseteq A$.
(i) Prove that $f(C \cup D)=f(C) \cup f(D)$.
(ii) Prove that $f(C \cap D) \subseteq f(C) \cap f(D)$.
(iii) Give an example wherein $f(C \cap D) \neq f(C) \cap f(D)$.
(b) Let $f: A \rightarrow B$ be an arbitrary function and $E, F \subseteq B$.
(i) Prove that $f^{-1}(E \cup F)=f^{-1}(E) \cup f^{-1}(F)$.
(ii) Prove that $f^{-1}(E \cap F)=f^{-1}(E) \cap f^{-1}(F)$.

